
Tutorial using BEAST v2.7.x
Troubleshooting

David A. Rasmussen

1 Background
The primary goal of most phylogenetic analyses in BEAST is to infer the posterior distribution of trees
and associated model parameters using Markov chain Monte Carlo (MCMC) sampling. In this tutorial, we
will learn how to analyze the output of an MCMC analysis in BEAST2 using Tracer. This program allows
us to easily visualize BEAST’s output and summarize results. As we will see, we can also use Tracer to
troubleshoot some of the most common MCMC problems encountered in BEAST.

While BEAST’s MCMC algorithm is fairly well optimised for phylogenetic inference, problems can arise,
especially as the complexity of our data and models increase. An MCMC run may not converge on a
stationary target distribution. More commonly, a run might converge but mix poorly - meaning that our
samples from the posterior are highly autocorrelated and therefore not independent. In these cases, it is
often necessary to tune the performance of the MCMC algorithm.

In this tutorial, we will consider a relatively simple example where we would like to infer a phylogeny and
evolutionary parameters from a small alignment of sequences. Our job will be to work together to increase
the efficiency of the MCMC so we can make BEAST purr. . .

1



BEAST v2 Tutorial

2 Programs used in this Exercise

2.0.1 BEAST2 - Bayesian Evolutionary Analysis Sampling Trees 2

BEAST2 (http://www.beast2.org) is a free software package for Bayesian evolutionary analysis of molec-
ular sequences using MCMC and strictly oriented toward inference using rooted, time-measured phyloge-
netic trees. This tutorial is written for BEAST v2.7.x (Bouckaert et al. 2014; Bouckaert et al. 2019).

2.0.2 BEAUti2 - Bayesian Evolutionary Analysis Utility

BEAUti2 is a graphical user interface tool for generating BEAST2 XML configuration files.

Both BEAST2 and BEAUti2 are Java programs, which means that the exact same code runs on all
platforms. For us it simply means that the interface will be the same on all platforms. The screenshots
used in this tutorial are taken on a Mac OS X computer; however, both programs will have the same layout
and functionality on both Windows and Linux. BEAUti2 is provided as a part of the BEAST2 package so
you do not need to install it separately.

2.0.3 Tracer

Tracer (http://beast.community/tracer) is used to summarise the posterior estimates of the various
parameters sampled by the Markov Chain. This program can be used for visual inspection and to assess
convergence. It helps to quickly view median estimates and 95% highest posterior density intervals of the
parameters, and calculates the effective sample sizes (ESS) of parameters. It can also be used to investigate
potential parameter correlations. We will be using Tracer v1.7.x.

2

http://www.beast2.org
http://beast.community/tracer


BEAST v2 Tutorial

3 Practical: Getting BEAST to purr

3.1 The data

To get started, I have generated a XML file that we can run our phylogenetic analysis in BEAST.

Download the first BEAST2 input file tutorial_run1.xml

The XML contains an alignment of 36 randomly simulated DNA sequences.

3.2 Inspecting the XML file in BEAUti

While we can open the XML file in any standard text editor, BEAUTi offers an easy way to inspect the
different elements of the analysis:

Open BEAUti and load in the tutorial_run1.xml file by navigating to File > Load.

By navigating between the different tabs at the top of the application window, we can inspect the data
and each element of the analysis. For example, in the Site Model panel, we can see that we are fitting a
GTR substitution model with no gamma rate heterogeneity (Figure 1).

3.2.1 Running the XML in BEAST

We are now ready to run our first analysis in BEAST.

Open BEAST2 and choose tutorial_run1.xml as the Input file. Then click Run.

Since we are only running 200,000 iterations, the MCMC should finish running in under 30 seconds.

3.2.2 Visualizing BEAST’s output in Tracer

Open Tracer and navigate to File > Import Trace File, then open tutorial_run1.log or simply drag
and drop the file into the Tracer window.

The results of your run will look similar, but not necessarily identical, to my results shown in Figure 2.

Tracer allows us to quickly visualize BEAST’s MCMC output in order to check performance and see our
parameter estimates. On the left there is a panel where all model parameters are listed along with their
mean posterior estimates and Effective Sample Size (ESS). Recall that the ESS tells us how many pseudo-
independent samples we have from the posterior, so the higher the better. Here, we can see that the ESS
is low for all parameters, indicating that we do not yet have a good estimate of the posterior distribution.

By selecting a parameter in the left panel and then clicking on the Trace tab, we can see how the MCMC
explored parameter space (Figure 3). For the clockRate parameter for instance, we see that the chain

3



BEAST v2 Tutorial

Figure 1: The Site Model panel in BEAUTi

Figure 2: Running BEAST with the specified XML configuration file.

4



BEAST v2 Tutorial

Figure 3: A trace plot for the clockRate parameter

quickly converged to a value of about 0.01 (the true value used to simulate the sequence data), but mixing
was poor, hence the low ESS.

We can also see our posterior estimates for each parameter by clicking on the Estimates tab while
highlighting the desired parameter in the left panel. This provides us with various summary statistics and
a frequency histogram representing our estimate of the posterior distribution constructed from our MCMC
samples. For the clockRate parameter, we can see that our estimate of the posterior is extremely rough,
again because we have so few uncorrelated samples from the posterior (Figure 4).

3.2.3 Run 2: Increasing the chain length

By checking the ESS, trace plots and parameter estimates, we got the picture that none of our parameters
in Run 1 mixed well. In this case, the simplest thing to try is to rerun the MCMC for more iterations.

Load tutorial_run1.xml back into BEAUti using File > Load. Navigate to the MCMC panel and
increase the chain length to 1 million. When done, navigate File > Save As and save as tutorial_run2←↩

.xml.

Note that we didn’t need to change the file names fo the tracelog or treelog, since they are by default
set to $(filebase).log and $(filebase)-$(tree).trees. When running the analysis $(filebase) will be replaced by
the name of the XML file and $(tree) by the name of tree in the analysis (in this case the name of the
alignment).

5



BEAST v2 Tutorial

Figure 4: Posterior estimates of the clockRate in Tracer.

Run the tutorial_run2.xml file in BEAST2 as we did before. When done, open tutorial_run2.log in Tracer.

Looking at the MCMC output in Tracer, we see that increasing the chain length did help (Figure 5). The
ESS values are higher and the traces look better, but still not great. In the next section, we will continue
to focus on the clockRate parameter because it still has a low ESS and appears to mix especially poorly.

3.2.4 Run 3: Changing the clockRate operators

If one parameter in particular is not converging or mixing well, we can try to tweak that parameter’s
operator(s). Remember that BEAST’s operators control what new parameter values are proposed at each
MCMC iteration and how these proposals are made (i.e. the proposal distribution). Since the clockRate
parameter was not mixing well in Run 2, we will try increasing the frequency at which new clockRates
are proposed.

Load tutorial_run2.xml back into BEAUti and select View > Show Operators panel. This will bring
up a new panel showing all the operators in use (Figure 6). In the box to the right of Adaptable Sampler←↩

: clockRate.c:seqs Scale substitution rate of partition c:seqs, change the value from 0.05 to 3.0. When done,
save as tutorial_run3.xml.

So, what just happened? We increased the weight of the scale operator on the clockRate, which moves the
parameter value up or down, so that new clockRates will be proposed more often in the MCMC. Going
from a weight of 0.05 to 3.0 means that new proposals for that parameter will be made sixty times as often,

6



BEAST v2 Tutorial

Figure 5: A trace plot for the clockRate parameter

Figure 6: The Operators panel in BEAUTi

7



BEAST v2 Tutorial

Figure 7: A trace plot for the clockRate parameter

but the frequency at which a given operator is called depends on the weights given to other operators. So
if there are parameters with very high ESS values, we may want to reallocate weight on their operators to
operators on less well mixing parameters.

Run tutorial_run3.xml in BEAST2 and then open tutorial_run3.log in Tracer.

We can see that optimizing the operator dramatically improves mixing for the clockRate (Figure 7).

One thing to keep in mind is that BEAST is using MCMC to explore a multidimensional parameter space,
and poor mixing in one dimension can be caused by poor mixing in another dimension. This often arises
because two parameters are highly correlated. We can identify these correlations in Tracer by visualizing
the joint distribution of a pair of parameters together. To do this, select one parameter in the left panel
and then, while holding the command key (Mac) or control key (Windows), select another. Then click on
the Joint-Marginal tab at the top and uncheck the Sample only box at the bottom. Looking at the
pairwise joint distribution for Tree.height and clockRate, we see that these two parameters are highly
negatively correlated (Figure 8). We therefore may want to add an operator that updates these parameters
together to more efficiently explore their parameter space.

3.2.5 Run 4: Adding an UpDown operator

The easiest way to improve MCMC performance when two parameters are highly negatively correlated is to
add an UpDown operator. This operator scales one parameter up while scaling the other parameter down.
If two parameters are highly positively correlated we can also use this operator to scale both parameters
in the same direction, up or down.

8



BEAST v2 Tutorial

Figure 8: The joint posterior distribution of Tree.height and clockRate

Load tutorial_run3.xml back into BEAUti and select View > Show Operators panel as before. In
the box to the right of Adaptable Sampler: clockRate.c:seqs Tree.t:seqs Scale up substitution rate c:seqs and scale ←↩

down tree t:seqs, change the weight on the Bactrian UpDown operator from 0.0 to 3.0. When done,
save as tutorial_run4.xml.

We just added an UpDown operator on the clockRate and the Tree.height parameters. The fact that
these two parameters are highly negatively correlated makes perfect sense. An increase in the clockRate
means that less time is needed for substitutions to accumulate along branches; meaning branches can be
shorter and yet still explain the same amount of accumulated evolutionary change in the sequence data. If
all branches in the tree become shorter, then the total Tree.height will also decrease. Thus, it makes sense
to include an UpDown operator on clockRate and Tree.height. In fact, by default BEAUTi includes
this operator. However, I disabled it in the original XML file by setting the weight on this operator to zero
for the purpose of illustration.

Run tutorial_run4.xml in BEAST2 and then open tutorial_run4.log in Tracer.

Looking at the MCMC output in Tracer, we see that all parameters are starting to mix well with relatively
high ESS values. Personally, I would probably want to run one final MCMC for several million iterations
just to be on the safe side, but this can easily be done by adding more iterations to the chain as we did
for Run 2. Alternatively, multiple different MCMC runs can be combined using the program LogCombiner
that comes packaged with BEAST. This may be better than running one single long analysis, as it allows

9



BEAST v2 Tutorial

Figure 9: A trace plot for the clockRate parameter

us to be sure independent runs are converging on posterior parameter values and increases our confidence
that we are sampling from the equilibrium distribution.

3.2.6 Further things to keep in mind

• The number of MCMC iterations needed to achieve a reasonable posterior sample in this tutorial
was quite small. With larger alignments, much longer chains may be needed.

• In this tutorial we only considered MCMC performance with respect to exploring parameter space,
but we also need to consider tree space. One simple diagnostic for checking convergence and mixing
in tree space is to look at the trace plot for the tree likelihood. Poor mixing in the tree likelihood
can indicate problems exploring tree space.

• It is always a good idea to check your posterior estimates against sampling from the prior.

4 Useful Links

• Bayesian Evolutionary Analysis with BEAST 2; chapter 10. (Drummond and Bouckaert 2014)

10

http://www.beast2.org/book.html


BEAST v2 Tutorial

This tutorial was written by David A. Rasmussen for Taming the BEAST and is licensed
under a Creative Commons Attribution 4.0 International License.

Version dated: June 9, 2024

11

http://creativecommons.org/licenses/by/4.0/
https://taming-the-beast.github.io
http://creativecommons.org/licenses/by/4.0/


BEAST v2 Tutorial

Relevant References
Bouckaert, R, J Heled, D Kühnert, T Vaughan, CH Wu, D Xie, MA Suchard, A Rambaut, and AJ

Drummond. 2014. Beast 2: a software platform for bayesian evolutionary analysis. PLoS computational
biology 10: e1003537.

Bouckaert, R et al. 2019. Beast 2.5: an advanced software platform for bayesian evolutionary analysis.
PLOS Computational Biology 15:

Drummond, AJ and RR Bouckaert. 2014. Bayesian evolutionary analysis with BEAST 2. Cambridge Uni-
versity Press,

12


	Background
	Programs used in this Exercise
	BEAST2 - Bayesian Evolutionary Analysis Sampling Trees 2
	BEAUti2 - Bayesian Evolutionary Analysis Utility
	Tracer


	Practical: Getting BEAST to purr
	The data
	Inspecting the XML file in BEAUti
	Running the XML in BEAST
	Visualizing BEAST's output in Tracer
	Run 2: Increasing the chain length
	Run 3: Changing the clockRate operators
	Run 4: Adding an UpDown operator
	Further things to keep in mind


	Useful Links

